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Abstract 
Clustering analysis plays an  important role in solwing 
practical problems in such domains as data mining 
in large databases. I n  this paper, we are interested in 
f i z z y  C-Means (FCM) based algorithms. The main  
purpose is to desi.qn an  effective validity function t o  
measure the result of clustering and detecting the best 
number of clusters f o r  a given data set in practical 
applications. After a rewiew of the relevent literature, 
we present the new validity function. Experimental 
results and comparisons will be given to  illustrate the 
performance of the new validity function. 

1 Introduction 
Clustering analysis is a fundamental process of data 
analysis. It is based on partitioning a set of data 
points into a number of clusters, where the data 
points inside each cluster exhibits similarity. It is 
a very active subject of research because of the im- 
portant role it plays in solving practical problems in 
such domains as data mining in large databases, fi- 
nancing, pattern recognition and image processing. 
Similarity is often defined by a distance measure and 
an objective function is optimized in order to find 
a good partition of data. A common class of such 
algorithms for clustering are partitioning methods in 
which a set of centers (also called seeds or representa- 
tive objects) are computed, each of which represents 
a cluster, and the membership of a data point to a 
cluster is defined based usually based on its distances 
with each center. Examples of these algorithms are 
K-Means, FCM and PCM [1][2] [3]. In the work re- 
ported in this paper, the target algorithm is Fuzzy 
C-Means (FCM). The fuzzy clustering approach was 
chosen for its robust performance in dealing with real 
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data. In fact, according to many studies such as that 
of Baraldi and Blonda [4], fuzzy clustering has the po- 
tential to decrease dependency on initialization and 
reduce the presence of dead units which are two se- 
rious problems with hard competitive clustering d- 
gorithms such as the K-means algorithm. The FChi 
algorithm is also one of the most widely used fuzzy 
clustering algorithms. 

Cluster validation is an important issue in cluster- 
ing analysis because clustering algorithms are unsu- 
pervised in nature and the result of clustering needs 
to be validated in most applications. For instance, 
most algorithms assume that the number of clusters 
in a data set is a user parameter. However, it is hardly 
the m e  that the user is able to answer is how many 
clusters are contended in the data set. The cluster va- 
lidity problem here relates to the measurement of how 
well the structure that is present in the data set hi= 
been identsed. It is clear that a “good” clustering 
of a data set should be based on an accurate number 
of clusters. Therefore, the practical approach to clus 
tering a data set tests a range of possible numbers of 
cluster, and discerns a “score” for each possible n u -  
ber of clusters based on the clustering results. The 
best number of cluster would have the best “score”. 
In the literature, this score is named as validity func- 
tion, validity measure, validity index, etc. 

Several validity functions for fuzzy clustering al- 
gorithms, such as partition coefficient, classification 
entropy and so on, have been used for measuring the 
validity mathematically. A better method to defile 
a validity function for measuring the clustering re- 
sults is to consider two conflicting factors: compact- 
ness within each cluster and separation between clus- 
ters. Xie  et a1 (1991) defined a well-known valid- 
ity index [5] using the ratio between the compactness 
and the separation, Fakuyama and Sugeno (1989) de- 
fined another validity index [S] using the discrepancy 
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of the compactness and the separation. Rezaee and 
Letlieveldt (1998) gave another validity index [7] us- 
ing a liner combination of the compactness and the 
separation. All these validity functions have proved 
to be effective in detecting the number of the clusters 
when they do not overlap each other. 

In this paper, we define a new validity index based 
on combining the average within-cluster scatter and 
the relative between-clusters distance. The new va- 
lidity index, coupled with the FCM algorithm, has 
been compared with a number of major indices found 
in the literature. Experiments have been made on 
synthetic and real data sets. The results show that 
the new validity index is particularly efficient when 
there are overlapping clusters. In the follows, we will 
flrst introduce the general FCM-based algorithm for 
determining the number of clusters. Then, we will in- 
troduce the new validity index as well as a number of 
existing indices. Experiments and comparison results 
will be presented thereafter before the concluding re- 
marks. 

2 Algorithm for Determining 
the Number of Clusters 

2.1 Basic FCM Algorithm 
The FCM algorithm dates back to 1973. Many 
derivatives have been proposed with modified defini- 
tions for the norm and prototypes for cluster centers 
[8]. FCM-based algorithms are the most widely used 
fuzzy clustering algorithms in practice. The basic 
FCM algorithm can be formulated as follows : 

n c  

Minimize  J,(u, V) = ~ ~ U ~ l l Z k  - vi112, (I) 
k=l i=l  

where n is the total number of data in a given 
data set and c is the number of clusters; X = 
{ x 1 , s 2 , - - . , s n }  cR" andV={v1,v2,..-,vC} cR" 
are the given set of feature data and the set of clus- 
ter centers; U = ( U k i ) n x c  is a fuzzy partition matrix 
composed of the membership of each feature vector 
Xk in each cluster i. Uki should satisfy xi=, Uki = 1 
for k = 1 , 2 , .  . . , n and 'Ilk; 2 0 for all i = 1 ,2 , .  . . , c 
and k = 1 , 2 , .  . . , n. The exponent m > 1 in J,(U, V) 
(Equation (1)) is a parameter which modifies the 
weighting effect of the membership value. Large m 
tends to result in approximately equal membership 
values aka ,  thus increasing the fussiness of clusters. 
d ( x , y )  = 11s-yll, s , y  E R" isadistancefunction (for 
example, Euclidean distance). To minimize J ,  (U, V) , 

the cluster centers (prototypes) vi and the member- 
ship matrix U need to be computed according to the 
following iterative formula: 

n 

k=l 
U E  x k  

(3) 21; = 
? G 

k=l 

Where k = 1,2 ,  ..., n, i = 1,2 ,  ..., c. The cluster cen- 
ters vi, i = 1 , 2 , .  . . , c, are initialized by some method 
(for example, Random initialization ) and the ini- 
tial elements of the membership matrix, Uki ( k  = 
1 ,2 , .  . . , n, i = 1 , 2 , .  . . , c), are computed using Equa- 
tion (2). To refine V and U ,  Equations (3) and (2) 
are used iteratively until the changes in V or U are 
sufliciently small. For final classification, the largest 
value of 'Ilki(i = 1,2 ,  . . . , c) is selected for any 2 k ,  and 
the corresponding io identifies the cluster to which 
the z k  belongs. 

In practical applications of the FCM algorithm, one 
has to solve several problems including determination 
of the number of clusters and initialization of prote 
types. The problem related to determination of the 
number of clusters is particularly important because 
the user does not generally know the exact number 
of clusters in the data set. The performance of clus- 
tering algorithms (FCM for example) in terms of the 
clustering results can be affected significantly if the 
number of clusters given is not accurate. 

2.2 Determination of the Number of 
Clusters 

Next, we give a general algorithm to detect the num- 
ber of clusters in a given data set. The following 
algorithm applies the FCM clustering algorithm to 
the data set for c = C,,, ..., Cmin and chooses the 
best number based on a (cluster) validity criterion. 
Here the Cmax and Cmin are, respectively, the maxi- 
mal and minimal numbers of clusters, and need to be 
provided by the user. 
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Algo: FCM based algorithm 
1. Choose Cm, and Cmin. 

2. For c = Cma to 

2.1. Initialize cluster centers (V). 
2.2. Apply the basic FCM algorithm to update 

the membership matrix (U) and the cluster 
centers (V). 

2.3. Test for convergence, if no, go to 2.2. 
2.4. Compute a validity value Vd(c). 

3. Compute c f  such that the cluster validity func- 
tion Vd(cf) is optimal. 

There exist several techniques for initializing clus- 
ter centers (for the Step 2.1). For the sake of sim- 
plicity, random initialization has been used in our 
experiments. 

3 New Validity Index 
The function Vd(cf) in the Algo measures the good- 
ness of the results of a clustering algorithm. A par- 
tition is considered good if it optimizes at least two 
conflicting criteria. One of these is related to within- 
class scattering, which needs to be " k e d ;  the 
other to between-class scattering, which needs to be 
maximized. Several major validity functions are re- 
viewed in this section and their performance is com- 
pared to the new one proposed here. 

3.1 Validity Indices For Fuzzy Clus- 
tering 

There are a number of cluster validity indices avail- 
able. Some of them use only the membership value 
of a fuzzy partition of the data (membership matrix), 
others use original data and computed cluster centers 
as well as the membership matrix. Here are some of 
the indices most frequently referred to in the litera- 
ture. 

Partition coefficient Vpc: 

- n  c 

e Partition entropy VPE: 
- n  c 

Vpc and V ~ E  are two simple indices that are com- 
puted using only the elements of the membership ma- 
trix. Both indices have a monotonic increasing (de- 
creasing) tendency when c increases and they do not 
handle the data well when there is overlap between 
(true) clusters. 

Xie's validity Vxie: 

a FS validity VFS: 
c n  

i=l k=l 
(7) 

C 

where B = $ vi. Vxi,(U, V, c )  is a tradeoff 

between compactness and separation. To obtain 
good clustering results, Vxie(U,V,c> needs to be 
minimized. VFS(U, V, c)  measures the discrepancy 
between compactness and separation. Minimum 
VFS(U, V, c )  is believed to correspond to the best clus- 
tering result. 

i=l 

Rezaee's validity VRez: 

VRee(U, v, c)  = (Y * Scat(c) + Dis(c) (8) 
where ct = Dis(C,,,) . Scat(c), the average scat- 

tering, is defined as , where a ( X )  = 

E 

3 I l~(~J11 

n 

k = l  
{ a ( X ) l ,  a ( X ) 2 , .  . . ' C(X)"}*,  a(X)P = ; (xi - 
P ) 2 ,  a(v2) = { O ( V i ) l ,  a(v2)2, * * * , O ( v i ) S } T ,  u(va)P = 

n n 

k=l  k = l  
uki(zi - = z k ,  for p = 

1,2, .  . . , s. The distance function is defined 
, -1 

Dmin =@nllvi-vjll(i,.j E [ l , ~ ] ) ,  Dmaz = m q l l v i -  
z # j  =,3 

vjll(i,j E [l, c]). Scat(c) indicates the compactness of 
the partition. A small value of Scat(c) means that, 
in average, the clusters are compact compared to the 
variance of the data set. Dis(c) indicates the t+ 
tal scattering (separation) between the clusters. The 
weighting factor (Y = Dis(C,,,) is introduced to 
compensate for differences in the scales of Dis(c) and 
Scat(c). The minimum value of V R ~ ~  is believed to 
correspond to the best clustering. 
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3.2 A New Validity Index 
The validity index VWSJ(U, V, c)  we propose has the 
following form: 

Here Scat(c) is defhed in the same way as 
in h e ’ s  index. It represents the compact- 
ness of the obtained clusters. The value of 
Scat(c) generally decreases when c increases be- 
cause the clusters become more compact. The range 
of Scat(c) is between 0 and 1. The term repre- 
senting the separation between clusters is defined 

, -1 

Dlnin=+nllvi-vjII andb-, =mvl lv i -v j l l .  We 

can also write Sep(c) as Sep(c) A *E[&] ,  where 
d, is the average distance between two cluster cen- 
ters. Both e and E[$]  in Sep(c)  are influenced 
by the geometry of the cluster centers. Sep(c)  tends 
to increase with the number of clusters, c. Sep(c)  is 
more sensitive to the distance between clusters than 
Scat( c) . Consequently, the value of VWSJ (U, V, c )  
changes more signifficantly when we merge two aver- 
lapping clusters to one cluster or split one cluster into 
two separated clusters. The expression -e is 
utilized in order to scale the value of Sep(c)  into the 
same range as Scat(c). A coefficient could be used to 
modulate the contribution of each of the two terms 
in VWSJ(U, V, c). For all the data sets used in this 
paper, the expression of VWSJ(U, V, c )  given in Equa- 
tion (9) has yielded more accurate results than any 
other index tested (see the next section). A cluster 
number which minimizes VWSJ(U, V, c) is considered 
to be the optimal value for the number of clusters 
present in the data. 

z#j 213 

4 The Comparison of the New 
Validity and the Others 

To show the performance of the new validity index 
VWSJ(U, V, c), we report here the experimental re- 
sults for three data sets, of which two come from the 
public domain, one is generated using Gaussian mix- 
ture distribution. In all the experiments, the fuzzier 
m in the algorithms was set at m = 2, the test for 
convergence in the basic FCM algorithm is performed 
using E = 0.001, and the distance function 11 I( is de- 
h e d  as Euclidean distance. The Random method 

- 
C - 
2 
3 
4 
5 
6 
7 
8 
9 
10 

VPC 
0.90 
0.97* 
0.93 
0.92 
0.92 
0.92 
0.93 
0.94 
0.96 

VPE I VXie I VFS I VRet 
0.18 I 0.04 I -694 I 1.26 
0.08* 
0.15 
0.18 
0.19 
0.19 
0.18 
0.16 
0.12 

0.02* 
0.08 
0.05 
0.09 
0.16 
0.35 
0.32 
0.40 

-894 
-976 
-1190 
-1328 
-1426 
-1496 
-1620 
-1721* 

’ 1.24 
2.03 

~ 3.23 
5.54 
5.80 
7.05 

VWSJ 
0.15 
0.03* 
0.05 
0.04 
0.10 
0.24 
0.65 
0.71 
1 .oo 

Table 1: Validity values on data set X30 

for cluster initialization is used in Algo. For de- 
termination of the number of clusters, the validity 
indices Vpc,Vp~,Vxi~ ,VFS and VR=% were compared 
with VWSJ. 

4.1 
The first test here uses the data set &o from 191. It 
has 30 2-dimensional data vectors divided into 3 well 
separated clusters, each of which contains 10 data 
vectors. The results for c = 2 to 10 are shown in 
Table 1. For this simple data set, only Fakuyama’s 
index VFS are not able to give the correct number of 
clusters (which is 3). 

Test on Data Set 1 (X~O)  

4.2 
The second data set is IRIS Data [10][11]. This is 
a biometric data set consisting of 150 measurements 
belonging to three flower varieties, generally known 
as the IRIS data set. Each class contains 50 obser- 
vations, in which two variables (length and width of 
the petal and sepal) are measured. So the data are 
represented as a point in 4-dimensional measurement 
space. IRIS Data is one of the most commonly used 
benchmark data sets in data analysis. Figures 1 show 
2D projections of these data. Of the three classes, two 
are overlapped. 

Halgamuge and Glesner [12] have shown that a 
very good classification can be obtained by using only 
two features. In [7], Rezaee indicated that for the 
cluster validity index VR,,, it is necessary to use one 
feature (petal length) to obtain the best number of 
classes, which is 3. In fact, as shown in Table 2, when 
using all four features, only the validity index VWSJ 
was able to yield the correct number of classes. The 
optimal number of classes is given as 2 using other 
validity indices. The ability of the new validity index 
to compute the correct number of classes without u s  
ing a feature selection procedure is a great advantage 

Test on Data Set 2 (IRIS) 
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dims 3&4 

3 

2.5 

2 

15 

1 

0.5 

0 
0 2 4 6 8 

- 
c - 
2 
3 
4 
5 
6 
7 
8 
9 
10 - 

Figure 1: IRIS Data: dimensions 3 and 4 

VPC 
0.89* 
0.79 
0.70 
0.66 
0.61 
0.55 
0.53 
0.51 
0.50 

VPE 
0.20* 
0.39 
0.56 
0.68 
0.61 
0.92 
0.99 
1.07 
1.13 

Vxie 
0.05* 
0.14 
0.20 
0.23 
0.81 
0;42 
0.25 
0.38 
0.35 

VWSJ 
0.18 
0.11* 
0.20 
0.20 
0.36 
1.18 
0.73 
1.28 
1.03 

Table 2: Validity values on W S  data set 

over the other indices. Our results for c ~ [ 2 ,  lo] are 
summarized in Table 2. 

4.3 

Data Set 3 was generated using a Gaussian mixture 
distribution. This data set is 3-dimensional and con- 
tains 5 clusters. Their means, variances and mixing 
coefficient are listed in Table 3. There are 50 data 
in each of the five clusters. In the data set, Cluster1 
and Cluster3 strongly overlap with each other. Ta- 
ble 4 summarizes the results obtained using different 
validity indices. As can be seen, our validity index 
VWSJ as well as the index Vpc were able to result in 
the correct number of clusters, which is 5. The in- 
dices V p ~ , V x i ~  and V R ~ ~ ,  which correctly predict the 
number of clusters in example 1, yield the numbers 
2, 3 and 4 respectively in this case. 

To conclude, the new validity index proposed here 
significantly improves the performance of the FCM- 
based algorithm in determining the number of clus- 
ters. In fact, based on results for the sets of exper- 
imental results reported above, only our validity in- 

Test on Data Set 3 (5 clusters) 

'able 3: Data Set 4 generated with a Gaussian mix- 
we distribution 
- 
c - 
2 
3 
4 
5 
6 
7 
8 
9 
10 - 

VPC 
0.78 
0.79 
0.818 
0.82* 
0.77 
0.73 
0.68 
0.63 
0.58 

VPE 
0.38* 
0.42 
0.40 
0.41 
0.51 
0.60 
0.71 
0.81 
0.90 

Vxie 
0.16 
0.09 
0.08* 
0.09 
0.35 
0.64 
0.55 
0.79 
0.67 

VF S 
-78 
-605 
-835 
-893 
-880 
-946* 
-890 
-860 
-710 

VRez 
2.71 
1.62 
1.39* 
1.58 
3.17 
4.44 
4.61 
5.97 
5.66 

Table 4: Validity values on Data Set 4 

-- 
VWSJ -- 
0.38 
0.18 
0.11 
0.10* 
0.32 
0.59 
0.66 
1.11 
1.02 

dex was able to predict the correct number of clus- 
ters in all cases. VPE performs well when the clusters 
are well separated and the data set does not contain 
too many outliers (noise points). VPC, Vxie ,V~s  and 
V R ~ ~  sometimes yield unpredictable results although 
they may perform well in difficult cases in which clus- 
ters overlap or there me a lot of noise points. 

5 Conclusion and Discussion 
The major contribution of this paper is a new ef-- 
ficient measure for validating clustering results and 
its application in determining the number of clusters. 
The new validity index has been tested on many pub- 
lic domain data, on generated test data and on data 
sets from real applications. The results have shown 
significant advantage of the new index over other in- 
dices, especially in the cases with overlapping clus- 
ters. Since the new validity VWS J is function of orig 
inal data, cluster centers and cluster memberships, it 
can be used to measure the quality of the clustering 
results obtained by various clustering methods other 
than FCM. On the other hand, VWSJ has allowed us 
to improve the FCM-based cluster number determi- 
nation algorithm used in this paper by introducing a 
cluster splitting strategy into the algorithm. We are 
currently studying the effect of the distance function 
d(z ,y )  and the fuzzifier (exponent parameter) m on 
the new validity index. 
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