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Abstract 
A high-speed network will typically assign each ad- 

mitted connection a fixed bandwidth, somewhere be- 
tween its mean and peak transmission rate. As an al- 
ternative, we develop a novel scheme for re-assigning 
network resources periodically on the basis of current 
network conditions. Our algorithm, which employs the 
theory of f izzy  logic control, is computational efficient, 
making frequent bandwidth re-allocations over relatively 
small time intervals feasible. In  situations where traffic 
intensities change drastically over short time intervals, 
our algorithm, tested against both static and non-fuzzy 
bandwidth re-allocation schemes, significantly lowers 
data loss while increasing network eficiency. 

Keywords: High-speed networks; dynamic bandwidth 
re-allocation; fuzzy logic control. 

1 Introduction 

We begin by describing a fairly general network. In 
particular, consider the situation depicted in Fig. 1, 
where N individually buffered traffic sources are ser- 
viced by a common output link. This represents only 
a portion of the overall network in the sense of both 
space and time. In particular, we are only considering 
the time interval, I over which these N connections are 
active. “In space” refers to the fact that, once they are 
multiplexed, these N sources could constitute a single 
aggregate source in a larger hierarchical buffered net- 
work (see [4]). 

Upon being admitted to the network, each of these 
N sources is allocated a portion of the available band- 
width, proportional to their service requirements. D e  
pending on the application, there are various methods 
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by which to accomplish this bandwidth allocation. The 
simplest is peak rate allocaiwn whereby each source is 
allotted a bandwidth as great as its maximum rate of 
transmission. 

While being the most conservative with respect to 
network reliability (i.e., with respect to data loss), peak 
rate allocation can be ver,y inefficient with respect to 
bandwidth utilization if the traffic is “bursty”, having 
pronounced on and off periods, for example. In these 
cases, a significant improvement in network efficiency 
can be made by allocating bandwidths somewhere be- 
tween the mean and peak rates. Since our sources are 
buffered, this does not necessarily compromise the reli- 
ability of the network. This is precisely the idea behind 
the eflectzve bandwidth approach (see [4]), where band- 
width is allocated so as to guarantee a pre-specified 
protlability of data loss to each individual source. 

To make further gains in overall network perfor- 
mance, we propose a novel and efficient dynamic band- 
width re-allocation (DBR) scheme which adaptively re- 
adjusts the bandwidth among the N sources on the ba- 
sis d on-line measurements. The prefix “re” refers to 
the fact that we are neither admitting new connections 
nor are we adjusting the total bandwidth, C dedicated 
to the current N connections. Our scheme operates at 
the sub-connection admission level. 

111 Section 2, we develop a DBR scheme for a two 
bufier system, employing a fuzzy logic controller, the 
inputs of which are certain buffer statistics. The case 
of AT > 2 buffers can be handled in a recursive manner 
(Section 4). In Section :3, our fuzzy DBR is tested 
against several non-fuzzy alternatives, including the 
static scheme, which corresponds to the standard case 
of fixed bandwidths. A marked reduction in data loss 
and improved link utilization over the static scheme is 
consistently observed in our simulations. Furthermore, 
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our fuzzy DBR yields significant improvements (over 
all alternatives) in situations where individual traffic 
intensities change drastically over time intervals much 
shorter than inter-connection times. 

2 The Two-Buffer Case 
In this section, we analyze a special case of the situ- 

ation depicted in Fig. 1. In particular, we consider the 

Figure 1: N buffered traffic sources sharing a single 
output link. 

case where N = 2. Here, two sources, denoted TS1 and 
TS2, pass though buffers 1 and 2, respectively. At any 
point in time, a1 C bandwidth is allocated to TS1 and 
a2 C bandwidth is allocated to TS2. Since a1 +a2 = 1, 
we define a = a1 so that a2 = 1 - a. Our main goal 
is to devise a DBR mechanism using fuzzy logic which 
makes frequently updates of a based strictly on buffer 
statistics, in particular, buffer contents. A DBR for the 
case of N > 2 will be discussed in Section 4. 

For the sake of context, we will describe our net- 
work as a packet switched network. Conventionally, the 
server will serve one packet of data during one time 
slot. For example, for an asynchronous transfer mode 
(ATM) line with a capacity of 155.52 Mbits/second, 
since each packet (“cell”) contains 53 bytes, the dura- 
tion of a time slot is approximately 2.762 microseconds 
(see [5]). Therefore, it may be impractical to update CY 

after every time slot. Instead, we will only make u p  
dates at certain epoch times, TI, TZ,. . -. In this paper, 
we consider the periodic case, where To = 0 and 

T k  - T k - 1  = L time Slots 

for each IC = 0,1,2,. - ., some constant L. A fuzzy DBR 

incorporating adaptively determined epoch times will be 
studied in a future publication. 

Adopting the conventions in [5], in any given time 
slot, first the packets arrive into the buffer(s) then, 
according to some scheduling scheme (for example, 
weighted round-robin), the server serves exactly one 
packet from either buffer 1 or buffer 2. If L is a 
large number, the temporal separation between con- 
secutive time slots is microscopic with respect to the 
{ T k  : k = 1,2, . . .} time scale. In this fluid scale, traffic 
essentially ‘ Y ~ o w s ~ ~  into the buffers and flows out the 
output link. See Fig. 2. 

Packet Arrivals Update I 
Packet Services 

Figure 2: The major events in the time interval 
[Tk-1, T k ] .  

Remark. A smaller value of L implies more updates of 
a which in turn implies improved performance of the 
network. An essential lower bound on L is the time 
(measured in time slots) necessary to compute the u p  
dated value of a. In this case, the a update calculated 
using buffer statistics measured at time T k - 1  can be 
used no earlier than time T k  = T k w 1  + L. 

Define 

Bjk) = content of buffer i measured 
at epoch time T k  (i = 1 and 2) 

and 

= proportion of bandwidth allocated 
to buffer 1 during [ T k ,  T k + l ) .  

If we update a on the basis of buffer contents alone, 
then, in accordance with the previous remark, we have 
the relation 

where g denotes the functional form of the DBR. We 
now focus on an explicit construction of g via fuzzy 
logic. 

2.1 A fuzzy logic controller 
In this subsection we construct a Sugeno-type fuzzy 

logic controller (SFLC) to serve as a DBR. Our choice 
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of the fuzzy logic methodology is motivated by earlier 
successful applications to different but related problems 
(see [l], [SI). What follows is a self-contained descrip 
tion of our particular SFLC. A more general discussion 
on the topic can be found in [7], for example. 

Define the input variable, 

P =  - contents of buffer 1 
capacity of buffer 1 

contents of buffer 2 
capacity of buffer 2 ‘ 

The operation of our SFLC follows four steps: measure- 
ment, fuzzification, inference and defuzzification. We 
describe each in detail. 

1. Measurement: Measure the value of P from the 
system. Note that P always lies in the interval [-1,1]. 
For this reason, P is said to have [-1,1] as its universe 
of discourse. 

2. Fuzzification: If our goal is to reduce overall data 
loss, then by simply observing the value of P, we get 
an idea of what change should be made to Q. For ex- 
ample, if P is very negative, it is clear that buffer 2 
requires more service than buffer 1 (an intuition which 
is validated by our simulations). As it stands, such a 
statement is subjective and inexact. 

To model the inexactness of the statements, “P is 
very negative”, “P is close to zero” and “P is very 
positive”, we employ the notion of fuzzy sets, each 
uniquely determined by a fuzzy membership function, 
f. Rather than assigning a “black-or-white”, “O-or- 
1”-type response, fuzzy membership functions permit 
a continuous range of membership grades. In our a p  
plication, we define three fuzzy sets, fV.Neg., fzero and 
fv.pos., intended to model three linguistic values of P: 
“P is very negative”, “P is close to zero” and “P is very 
positive”, respectively. Ekplicitly, we define 

( 1 , if P < -0.5 
-2P , i f - 0 . 5 < P < O  

0 , i f P > O  
fV.Neg. (p) = 

1 - 2 /PI , if -0.5 5 P 5 0.5 
0 , otherwise 

f o , i f P < ~  

fiero(P) = 

fV.POS.(P) = I 2p , if 0 5 P 5 0.5 
1 , i f P > 0 . 5 .  

They are depicted in Fig. 3. (Note that each has a 
maximum value of 1 and a minimum value of 0.) 

For obvious reasons, fV.Neg. and fv.pOs. are examples 
of trapezoidal membership functions whereas fzero is an 
example of a trianguhr membership function. Their 

Figure 3: The fuzzy sets fii.Neg., fzero and fv.pos. cor- 
responding to the linguistic values of P. 

simple forms lead to the quick computation of mem- 
bership grades. 

Now, the act of fuzzijying the crisp input P in- 
volves determining the membership grades, fV.Neg. (P), 
fzero(P) and fv.pos.(P). Note from Fig. 3 that for any 
input, at most two of the three fuzzy sets will return a 
non-’zero membership grade. Furthermore, note that 

fV.Neg.(P) -k fZero(]?) -k fV.Pos.(p) = 1 (1) 

for any input P in [-1,1]. 
- 3. Inference: So far, we have made a crisp obser- 

vaticln P and have determined its membership grades 
with respect to the three linguistic values of P. Now, 
we must decide how to adjust Q on the basis of these 
values. This is a two-step process, the first of which 
is termed inference. The mechanism for this inference 
is the inference engine which makes use of a fuzzy rule 
base. In our particular application, the rule base has 
three fuzzy rules: 

Itl  : IF P is very negative, THEN Q is small 
It2 : IF P is close to zero, THEN Q is medium 
It3 : IF P is very positive, THEN (Y is large. 

Before discussing the evaluation of these fuzzy rules, 
note that their forms are consistent with the control 
objective. For example, if P is negative, then the rela- 
tive contents of buffer 2 exceeds the relative contents of 
buffer 1, implying a need to improve service to buffer 
2, i.e., the value of a needs to be lowered. R2 and R3 
have similar interpret at ions. 

Given the crisp input E’, the inference engine eval- 
uates each of the rules, R I ,  R2 and R3. We illustrate 
this (evaluation for RI. First, define the antecedent part 
of RI to be 

An(R1) = “P is very negative”. 

Next, determine the truth value, Tr(An(R1)) of 
An(ltl). In our particular case, 

Tr(An(R1)) = fV.Neg.(P) * 

- 817 - 



If Tr(An(R1)) > 0, RI is said to have fired. 
In view of the role a plays in the switching node, it 

is natural to consider the value cqOw = 0.1 to be small, 

Hence, it is natural to assign the value 
&Med. = 0.5 to be mediUm and QHigh = 0.9 to be large. 

Val(R1) = fV.Neg.(p) .   LOW 

to the rule RI. Similarly, we set Val(R2) = f ie ro(P)  . 

tal, the output of the inference engine is the vector, 

4. Defuzzification: In our SFLC, the defuzzification 
step transforms the output of the inference engine into 
a crisp control output, a. Under the weighted average 
scheme, this value is given by 

QMed. and Val(%) = fV.Pos.(p) ' aHigh. In to- 

(Val(Rl), Val(R2),Val(R3)). 

= Val(R1) + Val(R2) + Val(R3) [by (l)]. 

The SFLC determined by Steps 1 through 4 is a 
special case of a f izzy  P-type controller (see [7]). A 
general P-type controller takes, as input, the deviation 
or "proportion" that the system output differs from 
the target. In our case, the target output is a zero 
difference in relative buffer contents. 

A fuzzy PD-type controller, as defined in [7], has 
also been constructed and tested by the authors. No 
significant gain in performance over the above P-type 
controller was observed. What is more, the rule base for 
a PD-controller has three times as many rules as does 
the related P-type controller, making the inference step 
more computationally intensive. 

2.2 The fuzzy DBR algorithm 
With the SFLC now constructed, the periodic u p  

dates of Q go as follows: 

(A): At time T = 0, fix an initial value do) (for exam- 

(B): At time Tk-1, record the buffer contents, BY-1) 

ple, the originally allocated bandwidth). 

and BY-') and set 

where Bic"p. represents the storage capacity of 
buffer i (i = 1,2). 

(c): In the time interval [Tk-l,Tk), while serving 
buffers 1 and 2 at the rates ctdk-l) C and (1 - 

a('-')) C, respectively, calculate the updated 
value, by applying the SFLC in Section 2.1 
to the crisp measurement Pk-1. By assumption, 
this calculation takes no longer than T k  - T k - 1  

time slots to perform. 

by the 
update, dk). 

(D): At time T k ,  replace the parameter 

(E): Return to (B), replacing k by k + 1. 

Remarks. (a) As revealed through numerous simula- 
tions, the above controller adapts quickly to changes. 
Hence, even a poor choice for the initial value do) will 
not have a negative effect on performance. 

(b) In general, a is adjusted so as to keep the rel- 
ative contents of both buffers equal, the goal being an 
improvement in overall system reliability. To achieve a 
more specialized control objective, one can weight the 
two terms in the definition of P k - 1  accordingly. 

(c) Recall that the two sources ( N  sources in gen- 
eral) are only assigned a fixed portion, C of the to- 
tal bandwidth, CTotal. With minor changes, our fuzzy 
DBR algorithm can also be applied to the distribution 
of the excess bandwidth, CTotal - c (see [2]). 

2.3 Non-fuzzy alternatives 
To test the effectiveness of our fuzzy dynamic band- 

width re-allocator (F-DBR), we will compare its perfor- 
mance in simulations against alternate DBR schemes. 
The operation of the twc-buffer system under any of 
these schemes follows Steps (A) through (E) with Step 
(C) changed accordingly. 

The Static Scheme: This is the standard situa- 
tion where the value of CY remains fixed for the dura- 
tion of the connection. It is represented by dk) = do), 
k =  1,2,3, ... 

The Proportional DBR (P-DBR): This DBR is 
determined by the formula 

Here, the amount of bandwidth allocated to a buffer is 
proportional to its relative contents. Note that 

The Linear DBR (L-DBR): 

= 1/2'Pk-1 + 1/2; 

a linear approximation to the F-DBR. 
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3 Simulation Results 
To compare the effectiveness of the above DBRs, 

simulations were run with diverse traffic sources using 
MATLAB Version 5.3. Borrowing from the language 
of ATM networks, the adopted units for the data in 
these traces is taken to be cells. Just the same, our 
simulations are not intended to model any particular 
data network; their primary purpose is to illustrate the 
advantages that our fuzzy DBR offers over static and, 
in some cases, other non-fuzzy schemes. The traces we 
used fall into three categories: 

On/OE These sources have on-phases, during 
which data is sent at a constant cell rate, and off-phases 
during which no data is sent. The lengths of all phases, 
both on and off, are independent and geometrically d i s  
tributed with rates A 1  and Az, respectively. This leads 
to the parameterization, 

onoff (Pl, P2 I 7) 
where 11 = A,’ is the mean on-time, = A;’ is the 
mean off-time and y is the (constant) peak on-rate. 
Such Markov modulated traffic is frequently encoun- 
tered in telephony (see [5]). 

On/Off with a Trend: These sources also have 
on- and off-phases, but do not have the same cell rate 
in all on-phases. Instead, for each subsequent on-phase, 
the transmission rate is increased by adding a constant 
factor. These sources can be parameterized as 

Onoff Trend ( I1  I cl2 I 7 ,  c) 

where y denotes the cell rate in the initial on-phase, 
c denotes the amount of increase per on-phase and A1 
and A2 are as defined above. Note that the cell rate in 
the nth on-phase is y + (n - 1) c. 

Flattened Star Wars: The Star Wars data set, 
produced by Garrett and Vetterli at Bellcore (see [3]) 
contains 171 000 frames of MPEG1 data encoding the 
movie Star Wars. Each frame represents 1/24 of a sec- 
ond of actual video. To generate realistic (although 
somewhat artificial) data sets for the purpose of testing 
our DBRs, we consider sub-traces starting at an initial 
frame fo and ending at a terminal frame fi where the 
units of data in each frame are scaled down by dividing 
by a constant factor p. The resulting data sets can be 
parameterized as 

FSW(f0, fl, PI  ’ 
These traces do not have off-phases. 

We now describe two tr.affic scenarios used to com- 
pare the above DBR schemes. In both, we take the 
overall cell loss ratio, 

# of cells lost 
# of cells sent 

CLR = - 

and link utilization-the p:roportion of time the server 
is busy-as performance measures. (The lower the 
CLR. and the higher the link utilization, the better.) 
A cell is lost if it arrives to a full buffer. 

3.1 Traffic scenario I 
Here, TS1 is OnOfF(20,40150) and TS2 is 

OnOff(40,20 150). Thus, while both sources have a 
peak rate of 50 cells per time unit, the lengths of the 
on-phases for TS2 are twice as long as those for TS1 
whereas TS1 has off-phases which are, on average, twice 
as long as those for TS2. Both traces are 20000 time 
units long and are independent of each other. 

In Fig. 4 (a), by k i n g  the link capacity at 80 cells 
per time unit (implies “time unit” = 80 time slots) and 
varying BFaP. = B F  from 250 to 500 cells, we obtain 
a graph of common buffer capacity versus loglo(CLR). 
Here, we update Q every L = 80 time slots. On the 
other hand, Fig. 4 (b) contains a plot of link capacity 
versus link utilization where BFaP. = B F  = 500 cells. 
The value of do) = 0.4 is used in the static scheme 
since this value delivers the lowest CLR for the given 
traces (determined via repeated simulations). The fol- 
lowing conclusions can be drawn: In terms of both CLR 
and link utilization, 

0 The performance of the P-DBR and the F-DBR 
are comparable. Indeed, with respect to CLR (Fig. 
4 (a)), F-DBR is just slightly better than P-DBR 
for medium buffer capacities whereas P-DBR is 
slightly better than F-DBR for large buffer capac- 
ities (> 300 cells). 

0 The performance of L-DBR is worse than both P- 
DBR and F-DBR. 

0 The performance of the static scheme is, by far, 
worse than any of the DBRs. 

3.2 Traffic scenario I1 
Here, TS1 is OnOff nend(50, 100 1 10,l)  and TS2 is 

FSFV(40 000,60000,500). These are two drastically 
different traffic sources, with TS2 being strongly non- 
homogeneous over time. The cell rate of TS1 increases 
steadily from 10 to 142 cells per time unit whereas TS2 
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Figure 4: Results for scenario I: (a) buffer size versus 
log,,(CLR); (b) link capacity versus utilization. KEY: 
* G static scheme; - L-DBR -- P-DBR; -. = 
F-DBR. 

fluctuates from 46 to 116 with a mean rate of 74.3 cells 
per time unit. 

In Fig. 5 (a), the link capacity is fixed at 160 cells per 
time unit (implies "time unit" = 160 time slots) and 
we update a every L = 160 time slots. In Fig. 5 (b) the 
maximum capacity of buffers 1 and 2 is fixed at 500 
cells each. In this scenario, the optimal value of a(,) 
for the static scheme is 0.6. Whereas the static scheme 
continues to perform poorly in comparison to the three 
DBRs, the conclusions we draw here are quite different 
from those of scenario I. In particular, from Fig. 5: 

0 Whereas the linear, proportional and fuzzy DBRs 
perform equally well with respect to link utiliza- 
tion, our fuzzy DBR performs significantly better 
than the remaining two DBRs in terms of CLR 
reduction. In fact, the loglo(CLR) graph has the 
steepest slope under the F-DBR scheme. There- 
fore, under the F-DBR scheme, the CLR decreases 
to zero (as a function of buffer size) exponentially 
faster than under any of the other schemes. 

0 Unlike scenario I, the L-DBR slightly out-performs 
the P-DBR with respect to CLR reduction. 

4 The N-Buffer Case 

We now consider the general situation depicted in Fig. 
1. First note that the P-DBR defined in Section 2.3 ex- 
tends automatically to the N-buffer case. In particular, 
for each i = 1,2, . . . , N, we define 

where Bik-') represents the contents of buffer i mea- 
sured at time Tk-1 and aik) denotes the proportion of 
C assigned to buffer i during time interval [ T k , T k + l ) .  

On the other hand, the construction of the fuzzy DBR 
in Section 2.2 relied heavily on the special relation be- 
tween al and a2, namely, a2 = l - al;  a relation only 
present in the N = 2 case. In this section, we propose 
two fuzzy DBR schemes for the case of N > 2 buffers. 

4.1 The binary tree F-DBR 
This fuzzy scheme employs a recursively defined fuzzy 
DBR whose generated proportions, ajk) can be repre- 
sented by branches of a binary tree. Here, we replace 
Steps (B) and (C) in the two-buffer F-DBR algorithm 
(Section 2.2), by the following steps: 
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1) Split the N buffers into two groups, G1 and G2, 
preferably, but not necessarily of the same size. 
For example, if N = 7, we can take GI = {1,2,3} 
and G2 = {4,5,6,7}. This determines an initial 
rooted binary tree, with the server as the root, and 
two leaves, G1 and Gz. 

2) Treating each group :is a single buffered source, 
measure the difference, 

085- 

I 

we can take G1 = (1) and G2 = {2,3}. For 
each such pair, (G1, G:?), calculate the correspond- 
ing P k - 1  and a(k)  as done in the previous step. 

(k-1) 
&Gz * j  

&-1) 
%€GI 3 P k - 1  = -- - 
CjEGl I??. C j E G z  ByaP. 

and, using P k P l  as the input, calculate dk) using 
the SFLC in Section 2!.1. (Hence, we will allocate 
d k ) C  bandwidth to group G1 and (1 - 
bandwidth to group G2.) In the binary tree, label 
the edge corresponding to G1 with this value of 
dk) and the edge corresponding to Gz with the 
value 1 - dk). 

3) For each group, G (in t,he previous step) containing 
more than one buffer, we split G into two groups 

4.2 The pairing F-DBR 
In terms of both description and implementation, a 
simpler F-DBR for an N-buffer system goes as fol- 
lows. If N is even, split the buffers into pairs, 
{1,2},{3,4},...,{N - 1,“. Treating each pair as 
single buffered source (as done in Section 4.1), apply 
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the P-DBR in Equation (2), denoting the respective 

( j  = 1,2, . . . , +), apply the SFLC in Section 2.1 to the 
corresponding two-buffer system, denoting the output 
by yjk). We then define the bandwidth proportions by 

9 N proportions by f l ~ ” , / 3 $ ” ,  . . . , p i ) .  For each pair j 

N 

If N is odd, we simply treat the Nth buffer as a 
“pair” when applying the P-DBR. Hence, in this case 

where 1.J denotes the integer part of 5. In any case, 
we only require L$] applications of the SFLC. 

Remark. Both schemes decompose the N-buffer 
system into many simpler two-buffer systems, each 
of which utilizes the original two-buffer fuzzy DBR. 
Therefore, in situations similar to scenario 11, where 
traffic sources have rapidly varying transmission rates 
and all buffers have equal storage capacity, we infer 
from the results in Section 3 that the binary tree F- 
DBR will outperform the pairing F-DBR, which will 
outperform the N-buffer version of the P-DBR, which, 
itself, will greatly outperform the static scheme. This 
is assuming we use the same value of L in each scheme. 

5 Conclusions 
In this paper, we developed a fuzzy DBR scheme 

which was robust and non-parametric, relying only 
on on-line measurements. Two principal observations 
can be made. First, employing a DBR mechanism 
greatly enhances the performance of a buffered net- 
work (over the static scheme) with respect to key per- 
formance measures. Secondly, our fuzzy DBR signifi- 
cantly out-performs all alternatives (including the in- 
tuitive proportional DBR) when the individual traffic 
sources have intensities which change drastically over 
short time intervals. 
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