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Abstract 
W e  investigate algorithms, based o n  the theory of 

fuzzy logic systems, which uses on-line trajjic measure- 
ments to  adaptively learn packet arrival patterns, lead- 
ing to “model-free” trafic prediction. The main pre- 
dictor, and several novel variants thereof are developed 
and tested o n  diverse data streams. For autoregressive- 
type t m f i c  sources, our algorithms are o n  par with 
standard time-series predictors. More significantly, our 
algorithms provide reliable predictions for  highly vari- 
able, non-stationary MPEG data; a situation where 
standard methods are poorly suited. 
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1 Introduction 
Consider the time series, { t k  : k = 0,1,2,. . .} where tk 
represents the total number of data packets (or bits) 
generated by a traffic source during the kth time in- 
terval. In a high-speed network, critical functions such 
as traffic shaping, policing, call admission control and 
bandwidth allocation require an accurate description of 
the various traffic sources. Indeed, if one can charac- 
terize the data streams reasonably well, one can make 
reliable predictions of future values of t k  on the ba- 
sis of packet arrival histories. By incorporating such 
a prediction mechanism, a network can “pre-adapt” to 
significant changes before the changes happen, hence 
greatly improving the overall performance of the net- 
work. 

There are a variety of situations where data streams 
follow well-known statistical models (see [5] and [lo], for 

example). Although driven by random processes, such 
time series have sufficient structure which, when prop 
erly identified, lends itself to dependable traffic pre- 
dictions. See [l] for a detailed treatise on standard 
prediction procedures in these cases. 

However, today’s networks are increasingly faced 
with traffic which may exhibit a host of complex char- 
acteristics such as long-range dependence and non- 
statwnarity (see [2]). In cases such as these, the task 
of identifying an underlying model (for the purpose of 
prediction) through “classic” (e.g., statistical) means is 
daunting and often times impractical. 

For this reason, we investigate adaptive, “model- 
free” traffic characterization methods which rely only 
on on-line measurements. These mechanisms “learn” 
from packet arrival histories; adapting to, and recog- 
nizing signs of future change in packet arrival patterns. 

In Section 2, we begin by describing the fuzzy logic 
systems used to approximate the underlying “predic- 
tor function”. Included is an “adaptive version” which 
uses nearest-neighborhood clustering to reduce compu- 
tation. The adaptive version was investigated earlier 
by Pang et al. [6]. Beyond [6], we design, incorporate 
and test a novel method for training the “dimension 
parameter” in the predictor. 

In Section 3, we test our fuzzy traffic predictors on 
various traces of real and simulated data. When the 
traces are such that standard time series methods are 
known to be reliable, our fuzzy methods yield predic- 
tions of comparable quality. The positive effect of train- 
ing n is clearly demonstrated. In situations where stan- 
dard time series methods tend to fail, our predictors 
continue to yield impressive results. 
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2 Fuzzy Logic Systems 
In this section, we define a special class of fuzzy logic 

systems; the key ingredient in our fuzzy traffic predic- 
tors. In general, fuzzy logic systems provide a natural 
means by which to approximate the “dynamics” of a 
system which can be observed, but is too complex to 
be directly modeled by classical analytical techniques. 

2.1 Optimal fuzzy logic systems 
Suppose we are given N input-output pairs, (xl, yl), 1 = 
1, . . . , N ,  representing N observations of a non-linear 
“black-box”-type system with an n-dimensional input, 
x1 = (zi, . . . , z i )  E Rn and a one-dimensional output 
y1 E R. The optimal fuzzy logic system (OFLS), f : 
Rn --$ R determined by these pairs has the functional 
form 

wherex= (z1,22, ..., zn) and 

Our choice of these particular fuzzy logic systems-and 
the core prediction method which follows-is governed 
by a previous application to a similar problem in [6]. 

With the proper choice of U (the smoothing pamme- 
ter), the OFLS in (1) can approximate the underlying 
dynamics of the system on the set of input-output pairs 
to any given degree of accuracy, E .  In particular, from 
[7] we have 

Theorem For any 6 > 0, there is a U* > 0 such that 
the fuzzy logic system in (1) with U = U* has the prop- 
erty: If(xl) - y’I < E for all 1 = 1, . . . , N .  

Comments. (a) If the sole purpose of this fuzzy 
logic system is to match all given input-output pairs 
to arbitrary accuracy, then the smaller the value of g, 
the better. Indeed, as U 1 0, f(xl) --+ y’ for each 
1 = 1, . . . , N .  However, since the intendend use of these 
fuzzy logic systems is to predict future traffic intensi- 
ties, the parameter U (which can be trained) should be 
large enough so that the influence of each component 
of the input vector is reasonably significant. 

(b) The above class of OFLSs can be described as 
those fuzzy logic systems with singleton fuzzifiers, prod- 
uct inference, centroid defuzzifier and Gaussian mem- 
bership functions. For the definitions of these terms, 
and a discussion of general fuzzy logic systems, see [7]. 

2.2 The main traffic predictor 
Fix a “stepahead” value, L. Assume we have o b  
served (and kept record of) the initial trace ( t k  : 
k = 0 , 1 , . . . ,  M - 1) of packet arrivals. Let the di- 
memion n denote the number of successive observa- 
tions. required for a reliable description of the packet 
arrivals Lsteps into the future. That is, for each 
k = 1,2, .  . . , M - n - L + 1, assume that packet ar- 
rivals, tk+n-z+L in the (IC -t n - 2 + L)th time interval 
can be adequately described by 

tk+n-2+L = F L ( t k - 1 ,  tk,. ’ ., tk+n-2) 

where FL : Rn + R is a deterministic but unknown 
predtEtor function. 

To approximate FL by an OFLS f ,  we create as 
man:y input-output pairs iu possible from the initial 
trace, namely: 

x1 = (tl-l,tL,. . ., tl+n-2) ; Y‘ = tl+n-2+L 

for 1 = 1,2, . . . , M - n - L + 1. In this way, the initial 
M d,ata points are reduced to 

N = M + 1 - ( n + L )  

input-output pairs. 
For r 2 M, let r, denote the predicted value oft ,  

(number of packets or bits sent in the rth time interval). 
Using the approximation, f x FL we can make L I, 
step ahead predictions by taking 

I. 

i ;M+j  = f(XM--n--L+2-t-j ) ;  j = O , l , . . . , L - l  

where xM-n-L+a+j = (tnI-n-L+lr . . . , ~ M - L ) .  Note 
that the final prediction is 

A 

tM+L-l = f(tM-n: tM--n+l,. . . , tM-1) 9 

so that all available data is used. 

Remark. The proper choice of n and U is crucial in 
controlling the prediction error. The smoothing pa- 
rameter U ,  being a continuous quantity, can be trained 
via a standard back-propa!gation scheme (see [7], [SI). 
Roughly speaking, we iterate 
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until l b k + l  - O k l  is sufficiently small. Here, C is the 
learning rate (a small number) and E is an error-of-fit 
meamre defined in terms of the training data and the 
OFLS, f in (1). For example, we can use the sum of 
squared-errors, 

N 

E = E(U) = :E(f(xl) - y1)2 
1=1 



A learning algorithm for the dimension, n will be dis- 
cussed in Section 2.5. 

2.3 An adaptive fuzzy logic system and 
associated traffic predictor 

The OFLS in (1) associates one “fuzzy rule” (corre- 
sponding to one summand) to each input-output pair 
generated by the training set, ( t k  : k = 0,1,. . , M -1). 
If there is sufficient determinism to imply that similar 
input vectors will yield sufficiently similar outputs, it is 
reasonable to associate just one fuzzy rule to an entire 
class of input-output pairs with similar input vectors. 
(Determinism is merely used to motivate the following 
procedure; it is not a requirement on the underlying 
time series.) In this way, we remove redundancies in 
the fuzzy rule base. 

To determine these “similarity classes”, we employ a 
modified version of the nearest neighborhood clustering 
scheme proposed in [7]: 

Starting with the first data pair {xl, yl}, establish 
a cluster center C1 at x1 and set Al(1) = y1 and 
B1( 1) = 1. Select a reasonably small radius r > 0 
(see Remark(b)). 

Consider the second input-output pair, { x 2 ,  y2}. 
Compute the distance between x2 and C1. 

(i) If )x2 -C11 > r ,  then we take x2 as the center, 
C2 of the second cluster and set A2(2) = y2, 
B2(2) = 1, A1(2) = Al(1) and Bl(2) = 

(ii) Otherwise, let A1(2) = Al(1) + y2 and 

Suppose that, just prior to classifying the kth 
input-output pair, {xk, yk}, there are K k  clusters 
with centers located at C’, 1 = 1,2,. . . , K k .  Find 
the nearest cluster center, C1k to xk. Then, 

(i) If Ixk - Cl.1 > r, establish a new cluster cen- 
ter C K k + l  = xk and set AK~+~(IC) = yk, 
B ~ ~ + l ( k )  = 1 and set Al(k) = Al(k - l), 
Bl(k) =Br(k-l)foreachl  =1,2,- . . ,Kk.  

(ii) Otherwise, set Al,(lc) = Al,(k - 1) + yk, 
Bl,(k) = Bl,(k-l)+l andsetAl(k) = Al(k- 
l), &(k) = &(IC - 1) for each 1 = 1,2,. . . K k  

Bl(1). 

Bl(2) = Bl(1) + 1. 

with 1 # l k .  

If IC < N ,  return to Step 3. 

N = M - n - L + 1. (Note that K 5 N . )  We define 
the associated adaptive fuzzy logic system (AFLS) by 

As was the case for f in Section 2.2, h approximates 
the predictor function, FL. Therefore, we obtain L-step 
ahead predictions via 

Remarks. (a) Given a radius, r > 0, if we replace 
each x1 in (1) by the center of the cluster to which it 
belongs, then, gathering like-terms, (1) becomes (2). 
Indeed, Bl ( N )  represents the number of input vectors 
in cluster 1 whereas Al(N)  represents the sum of out- 
puts of all input vectors in cluster 1. Conversely, if r is 
less than the minimum distance between any two xi's, 
the AFLS in (2) becomes the OFLS in (1). 

(b) The radius r determines the complexity of the 
AFLS. The smaller the radius, the more clusters, re- 
sulting in a more sophisticated nonlinear approxima- 
tion to F’ at the price of more computation. 

(c) An appropriate choice of c and n for an OFLS 
is not necessarily an appropriate choice for the cor- 
responding AFLS. Therefore, if one switches from an 
OFLS predictor to an AFLS predictor, both parame- 
ters must be retrained, albeit by the same methods. 
Furthermore, the parameter T can also be trained. 

2.4 Making successive predictions 
As it stands, given an initial trace of data, the OFLS 

(or AFLS) can make only L L-step ahead predictions 
before “running out of data”. To make consistently re- 
liable predictions beyond this horizon, we propose two 
options: 

Growing Window: As more data becomes avail- 
able, construct additional input-output vectors to be 
used for fitting an updated OFLS/AFLSs. In this way, 
as time progresses, we base our predictions on a larger 
segment of packet arrival history. 

Sliding Window: Clearly, as sample-size (time) in- 
creases, the training set in the growing window scheme 
will become quite large, significantly slowing the fit- - .  - - 

After all N input-output pairs have been considered, 
there will be K cluster centers, Cl,. . . , C K ,  and coef- 
ficients Al ( N )  and Bl ( N )  where I = 1,2, . . . , K and 

ting and predicting process. For this reason, we may 
want to incorporate a sliding information window of 
a fixed size W .  That is, even though we will observe 
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{to,tl,. . . , t M - l }  by time M - 1, we only use the in- 
formation in the window, {tM-W, t M - W + l , .  . . , t ~ - - l }  
(W < M )  to construct an OFLS/AFLS for the purpose 
of predicting t M + j ,  j = 0,1,  . . . , L - 1. 

ity of predictions, we use root mean-square error, 

2 RMSE = 8; (Fk - t k )  h 

kET  

Another advantage of the sliding window scheme is 
its ability to adapted to situations where the traffic is 
non-stationary, i.e., not homogeneous in time. Indeed, 
in such cases, information in the distant past might 
be misleading, so far as predicting the near future is 
concerned. 

Under either scheme, the parameters n and U should 
be periodically retrained. In the growing window 
scheme, this will accommodate for the ever increas- 
ing ensemble of input-output pairs. In the sliding win- 
dow scheme, this will help the predictor adapt to non- 
stationarities in the time series. 

2.5 Training the parameter n 
Since the discrete parameter n is a fundamental 

quantity describing, to some degree, the evolution of 
the packet (or bit) stream, it stands to reason that 
it, too, can be trained using packet arrival hist@ 
ries. In particular, using the observations { tk  : k = 
0, 1, . . . , M -  l}, we can employ the following grid-based 
training scheme: 

1) Fix a “reliable” U (perhaps a previously trained 
value), and select a grid for n (say, every mth in- 
teger between 1 and M ;  m dependent on compu- 
tational resources). 

2) For each n in the above grid: 

(i) Use the first 90% of the observed data to con- 
struct an OFLS (or AFLS). 

(ii) Make L-step ahead predictions of the remain- 
ing 10% of data points, using the sliding win- 
dow scheme if L < %. 

and the noise to  signal ratio, 

where T denotes the set of times for which we are mak- 
ing predictions. We now consider two diverse and r e p  
resentative situations. 

3.1 Simulated VBlR data 
In [5], a continuous-state autoregressive Markov 

model was proposed for multiplexed encoded variable 
bit rate (VBR) data. In statistical terms, this model is 
defined by the one-step recursion, 

t k  0.8781 tk:-1 + 0.1108 W k  ( 3) 

where {wk : k = 0,1 ,2 , .  . .} is a sequence of indepen- 
dent normal random variables, with common mean, 
0.572 and variance, 1. Each realization of this stochas- 
tic process, yields a typical data stream. Here, t k  r e p  
resents the bit rate (in buts/pixel) in the kth frame, 
where 1 frame represents $ of a second. Since there 
are 250000 pixels per frame, the units of t k  can be 
converted to bits/frame by multiplying by this factor. 

Using a procedure written in the C-language, 
a trace of such data WiB simulated. We fit an 
OFL’S and AFLS using a window of W values, 
{t30+w,t300-w+1,. . . , t29(,}, i.e., $ seconds of train- 
ing data, for W = 100,2100 and 300. The resulting 
predictors were then applied, yielding 5 five-step ahead 
predictions for the bit rates in frames 300 to 304. For 
the sake of reference, we state the actual (albeit simu- 
lated) bit rates: 

(iii) Calculate the noise to signal ratio, SNR-l 
over the predictions. (SNR-l is defined in 
Section 3.) 

4) Choose n which minimizes the SNR-l .  

Once n has been trained, we retrain U using 100% of 
the data and the trained value of n. 

For various fixed values of n, we trained the un- 
known parameter U.  The effect of varying n, measured 
in terms of RMSE and SNR-l, are recorded in Tables 
1 and 2. In the AFLS, we used the mean plus one 
stan’dard deviation of the training data as the radius 
for clustering. 

O’ne key observation cam be made. While offering 
com:parable prediction results (with respect to RMSE 

3 Simulation and Discussion 
In this section, we test the effectiveness of the OFLS 
and the AFLS traffic predictors. To measure the qual- 
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and SNR-l), the AFLSs in Table 2 are significantly 
simpler than the corresponding OFLSs. For example, 
when W = 100 and n = 4, the AFLS defined in (2) uses 
K = 3 fuzzy rules, whereas the corresponding OFLS in 
(1) uses N = W + 1 - (n + L) = 92 fuzzy rules. 

Table 1: Predictions using an OFLS. 

4 
10 
15 
20 
4 
10 
15 
20 
4 
10 
15 
20 

- w 
100 
100 
100 
100 
200 
200 
200 
200 
300 
300 
300 
300 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

n a  
0.036 
0.094 
0.094 
0.094 
0.025 
0.113 
0.116 
0.116 
0.020 
0.107 
0.116 
0.116 

200 
200 
200 

Table 2: Predictions using an AFLS. 

4 3 0.362 0.493 0.218 
10 9 0.228 0.492 0.217 
15 30 0.267 0.514 0.222 

300 I 
300 I 

n 200 11 20 11 48 II 0.127 11 0.333 I 0.179 I 
1 

4 I 3 0.203 0.368 0.188 
10 I 13 0.679 0.455 0.209 

L 

300 11 15 38 0.429 0.440 0.206 
300 11 20 76 0.347 0.397 0.195 

Since this data originates from a stationary statis- 
tical model, it provides a good opportunity to make 
comparisons between the performance of our fuzzy pre- 
dictors and established statistical techniques. To this 
end, using the same trace used in Tables 1 and 2, we 
applied the flexible ARAR forecasting technique using 
the ITSM software accompanying 111. The RMSE for 
the l-step ahead predictions of t300 to t304 are presented 
in Table 3. Unlike the OFLS and AFLS used in Tables 
1 and 2, both n and a were trained. Clearly, there is 
no significant difference in performance between OFLS, 
AFLS and ARAR with respect to RMSE. Given the re- 
liability of the ARAR method, this result affirms the 
effectiveness of our fuzzy predictors when both n and 
are trained. 

Table 3: Comparison between fuzzy predictors and 
ARAR forecasts. 

3.2 Real MPEG-1 data 
The Star Wars data set, produced by Garrett and Vet- 
terli [3] at Bellcore contains 171 000 frames of MPEG-1 
data encoding the movie Star Wars. This can be writ- 
ten as a time series, ( t k  : k = 0,1,2,. . . ,170 9%) where 
t k  denotes the number of bits in frame k. Here, there 
are 24 frames per second. 

Unlike the previous example, this time series pos- 
sesses many properties which make prediction via clas- 
sical methods extremely difficult. Among other things, 
it’s “bursty”, non-stationary, heavy-tailed, and ex- 
hibits long-range dependence (see [3]). 

Using an M = 200 frame training set (8.33 seconds 
of on-line measurements), we constructed a sliding win- 
dow version of the OFLS with n = 100, and used this 
OFLS to made 100 ten-step ahead predictions. Figure 
1 depicts several aspects of the prediction experiment: 
(a) The 200 frames of training data; (b) the 100 ten- 
step ahead predictions (bold/red graph represents ac- 
tual data; lighter/green graph represents predictions); 
(c) the graph of relative errors, 

Irk - t k  I 
l tk 1 

for k = 200,201,. . . ,300. (Here, k = 0 represents a 
randomly selected “initial frame”, not the actual initial 
frame of the overall data set.) Of particular mention: 

0 Over the 100 predictions, SNR-l = 0.157. 

0 In Fig. 1 (a), the strong determinisitic (albeit non- 
periodic) character of the time series is quite evi- 
dent. 

0 In Fig. 1 (c), more than 80% of relative errors are 
less than 0.5. This is a quite an encouraging result, 
given the complex features of the data. Indeed, 
this result clearly demonstrates the fuzzy predic- 
tors ability to “learn” from similar (but distinct) 
patterns embedded in the training data. 

- 838 - 



4 Conclusions 

‘*bll &1.. .......... m 

: I  
I 

Figure 1: Prediction of Star Wars data. 

In this paper, we investigated the effectiveness of 
fuzzy time series predictors in predicting packet arrival 
patterns. In a situation where classic forecasting meth- 
ods .are known to perform well, our fuzzy predictor, 
incorporating a novel training scheme for the dimen- 
sion parameter, performed. as well as these methods. 
In a situation where classic: forecasting methods would 
encounter difficulties, our fuzzy predictor continued to 
perform well, basing its predictions on past experiences, 
not on any underlying model. Future work includes 
additional testing and “fintituning” of the various pre- 
dictors. Our methods will also be applied to the fore- 
casting of other network statistics. 
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